Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-Hydroxybenzoic acid-purin-6-amine (3/1)

## Lian-cai Du,<sup>a</sup> Wu-lan Zeng,<sup>b</sup> Xue-ying Liu<sup>a</sup> and Fang-Fang lian<sup>c</sup>\*

<sup>a</sup>Microscale Science Institute, Department of Biological Engineering, Weifang University, Weifang 261061, People's Republic of China, <sup>b</sup>Microscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and <sup>c</sup>Microscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 6 June 2009; accepted 30 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.116; data-to-parameter ratio = 15.7.

In the title 3:1 adduct, 3C<sub>7</sub>H<sub>6</sub>O<sub>3</sub>·C<sub>5</sub>H<sub>5</sub>N<sub>5</sub>, an intramolecular O-H···O hydrogen bond occurs in each of the three 2hydroxybenzoic acid molecules. In the crystal, the components are linked by  $N-H \cdots O$  and  $O-H \cdots N$  hydrogen bonds.

### **Related literature**

For medicinal background, see: Forsythe & Ennis (1999).



## **Experimental**

Crystal data  $3C_7H_6O_3 \cdot C_5H_5N_5$ 

 $M_r = 549.49$ 



Z = 4

Mo  $K\alpha$  radiation

 $0.38 \times 0.22 \times 0.14 \text{ mm}$ 

5680 independent reflections

4872 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.11 \text{ mm}^{-1}$ 

T = 293 K

 $R_{\rm int} = 0.020$ 

| Monoclinic, $P2_1/c$           |
|--------------------------------|
| a = 10.998 (2) Å               |
| b = 10.053 (2) Å               |
| c = 23.490 (7) Å               |
| $\beta = 106.98 \ (3)^{\circ}$ |
| $V = 2483.9(10) \text{ Å}^3$   |

#### Data collection

'V

Siemens SMART CCD diffractometer Absorption correction: none 22329 measured reflections

#### Refinement

 $\begin{array}{l} R[F^2>2\sigma(F^2)]=0.041\\ wR(F^2)=0.116 \end{array}$ 361 parameters H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ 5680 reflections

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------|------|-------------------------|--------------|---------------------------|
| O1-H1DO3                            | 0.82 | 1.87                    | 2.5946 (17)  | 146                       |
| $O4-H4B\cdots O5$                   | 0.82 | 1.89                    | 2.6111 (18)  | 146                       |
| $O7 - H7A \cdots O9$                | 0.82 | 1.89                    | 2.6118 (15)  | 146                       |
| $O2-H2C\cdots N4^{i}$               | 0.82 | 1.87                    | 2.6795 (18)  | 167                       |
| $O6-H6B\cdots N3^{ii}$              | 0.82 | 1.82                    | 2.6305 (18)  | 172                       |
| $O8-H8B\cdots N2^{iii}$             | 0.82 | 1.78                    | 2.5864 (17)  | 168                       |
| $N1 - H1A \cdots O9^{iii}$          | 0.86 | 2.09                    | 2.9302 (17)  | 167                       |
| $N1 - H1B \cdot \cdot \cdot O3^{i}$ | 0.86 | 2.01                    | 2.8593 (18)  | 171                       |
| $N5-H5A\cdots O7^{ii}$              | 0.86 | 2.14                    | 2.8585 (17)  | 141                       |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii) -x, -y + 2, -z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5001).

#### References

Forsythe, P. & Ennis, M. (1999). Inflam. Res. 48, 301-307.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2009). E65, o1791 [doi:10.1107/S1600536809025240]

## 2-Hydroxybenzoic acid-purin-6-amine (3/1)

## L. Du, W. Zeng, X. Liu and F.-F. Jian

## Comment

Adenine and its derivatives are an important class of compounds because they exhibit better pharmacological activities such as penicillins, antibiotics (Forsythe & Ennis, 1999). We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new adenine compounds with higher bioactivity.

The adenine ring system is essentially planar, with a dihedral angle of 0.37(8) between the ring (atoms N4/N5/C24—C26) and the ring (N2/N3/C22—C25). The dihedral angles between the mean planes of the adenine system and rings (C1—C6) and rings (C8—C13) and rings (C15—C20) are 2.41 (7) and 85.83 (7) and 80.3 (7), respectively. The dihedral angle between rings(C1—C6) and rings (C8—C13) is 84.02 (8). In the crystal structure, weak inter molecular C—H…O hydrogen bonds and intramolecular O—H…O hydrogen-bond interactions to stabilize the crystal structure (Table 1). The packing (Fig.2) is further stabilized by weak O—H…O interactions.

## Experimental

Adenine 1.35 g(0.01 mol) and 2-hydroxybenzoic acid 4.14 g(0.03 mol) with ethanol were stirred for 18 h at 353 K. The solution was then filtered and concentrated to afford the white title compound 3.63 g (yield 70%). Colourless blocks of (I) were obtained by slow evaporation of an ethanol-water (10:1 v/v) solution at room temperature over a period of one week.

## Refinement

The H atoms were located geometrically (C—H = 0.93–0.97 Å, N—H = 0.86Å, O—H = 0.82Å) and refined as riding with  $U_{iso}(H) = 1.2 U_{eq}(\text{carrier})$ . The highest difference peak is 0.45Å from H6A and might indicate unmodelled positional disorder of O1.

**Figures** 



Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.

## 2-Hydroxybenzoic acid-purin-6-amine (3/1)

## Crystal data

| $3C_7H_6O_3 \cdot C_5H_5N_5$   | F(000) = 1144                                  |
|--------------------------------|------------------------------------------------|
| $M_r = 549.49$                 | $D_{\rm x} = 1.469 {\rm Mg m}^{-3}$            |
| Monoclinic, $P2_1/c$           | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc           | Cell parameters from 5680 reflections          |
| a = 10.998 (2) Å               | $\theta = 3.0 - 27.5^{\circ}$                  |
| b = 10.053 (2) Å               | $\mu = 0.11 \text{ mm}^{-1}$                   |
| c = 23.490 (7)  Å              | T = 293  K                                     |
| $\beta = 106.98 \ (3)^{\circ}$ | Block, colourless                              |
| $V = 2483.9 (10) \text{ Å}^3$  | $0.38 \times 0.22 \times 0.14 \text{ mm}$      |
| Z = 4                          |                                                |

## Data collection

| Siemens SMART CCD<br>diffractometer      | 4872 reflections with $I > 2\sigma(I)$                                    |
|------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.020$                                                     |
| graphite                                 | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ |
| ω scans                                  | $h = -14 \rightarrow 14$                                                  |
| 22329 measured reflections               | $k = -13 \rightarrow 12$                                                  |
| 5680 independent reflections             | $l = -30 \rightarrow 30$                                                  |

## Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.041$ | Hydrogen site location: inferred from neighbouring sites                                            |
| $wR(F^2) = 0.116$               | H-atom parameters constrained                                                                       |
| <i>S</i> = 1.06                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0624P)^{2} + 1.1319P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 5680 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                                     |
| 361 parameters                  | $\Delta \rho_{max} = 0.83 \text{ e} \text{ Å}^{-3}$                                                 |
| 0 restraints                    | $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$                                              |

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

-- . .--

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|      | x             | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|--------------|--------------|---------------------------|
| 01   | 0.58987 (11)  | 0.54268 (12) | 0.10882 (5)  | 0.0328 (3)                |
| H1D  | 0.6464        | 0.5035       | 0.0993       | 0.049*                    |
| O2   | 0.70858 (10)  | 0.59642 (10) | -0.04308 (4) | 0.0222 (2)                |
| H2C  | 0.7663        | 0.5468       | -0.0451      | 0.033*                    |
| 03   | 0.73581 (9)   | 0.48786 (10) | 0.04287 (4)  | 0.0216 (2)                |
| C1   | 0.42191 (15)  | 0.83244 (16) | -0.01407 (8) | 0.0309 (3)                |
| H1C  | 0.3832        | 0.8986       | -0.0410      | 0.037*                    |
| C2   | 0.38415 (14)  | 0.81020 (16) | 0.03701 (7)  | 0.0290 (3)                |
| H2B  | 0.3200        | 0.8621       | 0.0440       | 0.035*                    |
| C3   | 0.44049 (14)  | 0.71264 (16) | 0.07710 (7)  | 0.0258 (3)                |
| H3B  | 0.4136        | 0.6985       | 0.1106       | 0.031*                    |
| C4   | 0.53780 (13)  | 0.63482 (14) | 0.06763 (6)  | 0.0207 (3)                |
| C5   | 0.57687 (13)  | 0.65547 (14) | 0.01619 (6)  | 0.0190 (3)                |
| C6   | 0.51750 (14)  | 0.75499 (15) | -0.02417 (7) | 0.0254 (3)                |
| H6A  | 0.5427        | 0.7691       | -0.0582      | 0.030*                    |
| C7   | 0.67994 (13)  | 0.57290 (14) | 0.00646 (6)  | 0.0184 (3)                |
| O4   | 0.24665 (11)  | 0.29192 (11) | 0.20033 (5)  | 0.0290 (2)                |
| H4B  | 0.2049        | 0.2650       | 0.2217       | 0.043*                    |
| O5   | 0.18452 (10)  | 0.26468 (11) | 0.29882 (5)  | 0.0279 (2)                |
| O6   | 0.27892 (10)  | 0.39746 (11) | 0.37517 (4)  | 0.0254 (2)                |
| H6B  | 0.2255        | 0.3646       | 0.3891       | 0.038*                    |
| C8   | 0.54365 (13)  | 0.53292 (16) | 0.29552 (7)  | 0.0242 (3)                |
| H8A  | 0.6111        | 0.5862       | 0.3164       | 0.029*                    |
| C9   | 0.52558 (14)  | 0.50464 (17) | 0.23539 (7)  | 0.0279 (3)                |
| H9A  | 0.5809        | 0.5405       | 0.2162       | 0.033*                    |
| C10  | 0.42685 (15)  | 0.42432 (17) | 0.20407 (7)  | 0.0277 (3)                |
| H10A | 0.4161        | 0.4064       | 0.1641       | 0.033*                    |
| C11  | 0.34292 (13)  | 0.36986 (15) | 0.23260 (6)  | 0.0222 (3)                |
| C12  | 0.35880 (13)  | 0.39957 (14) | 0.29283 (6)  | 0.0189 (3)                |
| C13  | 0.46011 (13)  | 0.48074 (14) | 0.32360 (6)  | 0.0202 (3)                |
| H13A | 0.4713        | 0.4998       | 0.3635       | 0.024*                    |
| C14  | 0.26650 (13)  | 0.34705 (14) | 0.32213 (6)  | 0.0199 (3)                |
| N1   | 0.08652 (11)  | 0.72297 (12) | -0.04856 (5) | 0.0205 (2)                |
| H1A  | 0.0719        | 0.7725       | -0.0797      | 0.025*                    |
| H1B  | 0.1424        | 0.6607       | -0.0429      | 0.025*                    |
| N2   | -0.06434 (11) | 0.84210 (12) | -0.01967 (5) | 0.0193 (2)                |
| N3   | -0.12090 (11) | 0.80213 (12) | 0.06983 (5)  | 0.0208 (2)                |
| N4   | 0.11815 (11)  | 0.56210 (12) | 0.06827 (5)  | 0.0194 (2)                |
| N5   | 0.00044 (11)  | 0.61900 (12) | 0.12747 (5)  | 0.0200 (2)                |
| H5A  | -0.0296       | 0.6176       | 0.1574       | 0.024*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C22  | 0.02299 (12)  | 0.74279 (14) | -0.00930 (6) | 0.0173 (3) |
|------|---------------|--------------|--------------|------------|
| C23  | -0.12982 (13) | 0.86541 (15) | 0.01934 (6)  | 0.0218 (3) |
| H23A | -0.1886       | 0.9344       | 0.0098       | 0.026*     |
| C24  | -0.03382 (12) | 0.70387 (14) | 0.08015 (6)  | 0.0176 (3) |
| C25  | 0.03992 (12)  | 0.66798 (14) | 0.04351 (5)  | 0.0169 (3) |
| C26  | 0.09105 (13)  | 0.53725 (15) | 0.11826 (6)  | 0.0210 (3) |
| H26A | 0.1301        | 0.4703       | 0.1446       | 0.025*     |
| O7   | -0.00080 (10) | 1.02622 (10) | 0.25745 (4)  | 0.0227 (2) |
| H7A  | -0.0214       | 1.0709       | 0.2269       | 0.034*     |
| 08   | 0.13258 (9)   | 0.99434 (10) | 0.10831 (4)  | 0.0209 (2) |
| H8B  | 0.1022        | 1.0483       | 0.0818       | 0.031*     |
| 09   | 0.00284 (10)  | 1.09961 (10) | 0.15130 (4)  | 0.0226 (2) |
| C15  | 0.13464 (15)  | 0.84945 (15) | 0.30203 (6)  | 0.0243 (3) |
| H15A | 0.1073        | 0.8584       | 0.3357       | 0.029*     |
| C16  | 0.22228 (14)  | 0.75286 (15) | 0.30017 (7)  | 0.0258 (3) |
| H16A | 0.2539        | 0.6973       | 0.3328       | 0.031*     |
| C17  | 0.26428 (14)  | 0.73742 (15) | 0.24987 (7)  | 0.0238 (3) |
| H17A | 0.3225        | 0.6712       | 0.2486       | 0.029*     |
| C18  | 0.21830 (13)  | 0.82174 (14) | 0.20201 (6)  | 0.0193 (3) |
| H18A | 0.2467        | 0.8124       | 0.1686       | 0.023*     |
| C19  | 0.12974 (12)  | 0.92108 (13) | 0.20291 (6)  | 0.0161 (3) |
| C20  | 0.08674 (13)  | 0.93391 (14) | 0.25345 (6)  | 0.0182 (3) |
| C21  | 0.08283 (12)  | 1.01232 (13) | 0.15196 (6)  | 0.0170 (3) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| 01  | 0.0346 (6) | 0.0406 (7) | 0.0266 (5) | 0.0103 (5)  | 0.0144 (5) | 0.0040 (5)  |
| O2  | 0.0233 (5) | 0.0252 (5) | 0.0210 (5) | 0.0045 (4)  | 0.0110 (4) | 0.0023 (4)  |
| O3  | 0.0221 (5) | 0.0234 (5) | 0.0204 (5) | 0.0038 (4)  | 0.0081 (4) | 0.0015 (4)  |
| C1  | 0.0284 (8) | 0.0248 (8) | 0.0379 (9) | 0.0063 (6)  | 0.0070 (7) | 0.0024 (6)  |
| C2  | 0.0219 (7) | 0.0259 (8) | 0.0389 (9) | 0.0027 (6)  | 0.0085 (6) | -0.0100 (6) |
| C3  | 0.0223 (7) | 0.0301 (8) | 0.0268 (7) | -0.0025 (6) | 0.0103 (6) | -0.0099 (6) |
| C4  | 0.0198 (6) | 0.0216 (7) | 0.0199 (6) | -0.0024 (5) | 0.0047 (5) | -0.0045 (5) |
| C5  | 0.0177 (6) | 0.0183 (6) | 0.0210 (6) | -0.0020 (5) | 0.0058 (5) | -0.0039 (5) |
| C6  | 0.0250 (7) | 0.0234 (7) | 0.0279 (7) | 0.0016 (6)  | 0.0081 (6) | 0.0018 (6)  |
| C7  | 0.0173 (6) | 0.0192 (6) | 0.0188 (6) | -0.0034 (5) | 0.0052 (5) | -0.0031 (5) |
| O4  | 0.0315 (6) | 0.0307 (6) | 0.0236 (5) | 0.0018 (5)  | 0.0063 (4) | -0.0038 (4) |
| O5  | 0.0272 (5) | 0.0261 (6) | 0.0307 (6) | -0.0055 (5) | 0.0092 (4) | 0.0005 (4)  |
| O6  | 0.0258 (5) | 0.0320 (6) | 0.0235 (5) | -0.0064 (4) | 0.0149 (4) | 0.0004 (4)  |
| C8  | 0.0177 (6) | 0.0276 (8) | 0.0283 (7) | 0.0040 (6)  | 0.0083 (5) | 0.0080 (6)  |
| C9  | 0.0233 (7) | 0.0367 (9) | 0.0288 (7) | 0.0096 (6)  | 0.0156 (6) | 0.0135 (6)  |
| C10 | 0.0307 (8) | 0.0361 (9) | 0.0196 (7) | 0.0123 (7)  | 0.0123 (6) | 0.0061 (6)  |
| C11 | 0.0229 (7) | 0.0225 (7) | 0.0209 (6) | 0.0081 (6)  | 0.0059 (5) | 0.0021 (5)  |
| C12 | 0.0202 (6) | 0.0193 (7) | 0.0187 (6) | 0.0060 (5)  | 0.0082 (5) | 0.0048 (5)  |
| C13 | 0.0200 (6) | 0.0219 (7) | 0.0194 (6) | 0.0046 (5)  | 0.0069 (5) | 0.0051 (5)  |
| C14 | 0.0196 (6) | 0.0189 (6) | 0.0219 (6) | 0.0031 (5)  | 0.0072 (5) | 0.0047 (5)  |
| N1  | 0.0242 (6) | 0.0239 (6) | 0.0162 (5) | 0.0061 (5)  | 0.0101 (4) | 0.0050 (4)  |

| N2  | 0.0218 (5) | 0.0202 (6) | 0.0172 (5) | 0.0020 (5)  | 0.0074 (4) | 0.0020 (4)  |
|-----|------------|------------|------------|-------------|------------|-------------|
| N3  | 0.0220 (6) | 0.0245 (6) | 0.0181 (5) | 0.0007 (5)  | 0.0096 (4) | -0.0012 (4) |
| N4  | 0.0188 (5) | 0.0209 (6) | 0.0183 (5) | 0.0004 (5)  | 0.0052 (4) | 0.0019 (4)  |
| N5  | 0.0215 (6) | 0.0271 (6) | 0.0128 (5) | -0.0049 (5) | 0.0075 (4) | -0.0006 (4) |
| C22 | 0.0174 (6) | 0.0189 (6) | 0.0157 (6) | -0.0017 (5) | 0.0048 (5) | -0.0007 (5) |
| C23 | 0.0229 (7) | 0.0232 (7) | 0.0205 (6) | 0.0025 (6)  | 0.0081 (5) | 0.0008 (5)  |
| C24 | 0.0173 (6) | 0.0208 (7) | 0.0149 (6) | -0.0048 (5) | 0.0051 (5) | -0.0019 (5) |
| C25 | 0.0177 (6) | 0.0198 (6) | 0.0138 (6) | -0.0024 (5) | 0.0054 (5) | -0.0006 (5) |
| C26 | 0.0201 (6) | 0.0238 (7) | 0.0174 (6) | -0.0022 (6) | 0.0029 (5) | 0.0031 (5)  |
| 07  | 0.0308 (5) | 0.0222 (5) | 0.0178 (5) | 0.0063 (4)  | 0.0114 (4) | 0.0022 (4)  |
| 08  | 0.0247 (5) | 0.0238 (5) | 0.0165 (4) | 0.0076 (4)  | 0.0094 (4) | 0.0052 (4)  |
| 09  | 0.0278 (5) | 0.0235 (5) | 0.0190 (5) | 0.0097 (4)  | 0.0107 (4) | 0.0047 (4)  |
| C15 | 0.0324 (7) | 0.0245 (7) | 0.0169 (6) | -0.0010 (6) | 0.0086 (6) | 0.0034 (5)  |
| C16 | 0.0290 (7) | 0.0239 (7) | 0.0215 (7) | -0.0003 (6) | 0.0025 (6) | 0.0089 (5)  |
| C17 | 0.0208 (6) | 0.0202 (7) | 0.0288 (7) | 0.0025 (6)  | 0.0048 (5) | 0.0045 (6)  |
| C18 | 0.0181 (6) | 0.0192 (7) | 0.0211 (6) | -0.0005 (5) | 0.0065 (5) | 0.0009 (5)  |
| C19 | 0.0164 (6) | 0.0162 (6) | 0.0152 (6) | -0.0015 (5) | 0.0037 (5) | 0.0006 (5)  |
| C20 | 0.0204 (6) | 0.0169 (6) | 0.0176 (6) | -0.0019 (5) | 0.0059 (5) | -0.0010 (5) |
| C21 | 0.0180 (6) | 0.0177 (6) | 0.0157 (6) | -0.0009 (5) | 0.0055 (5) | -0.0005 (5) |
|     |            |            |            |             |            |             |

## Geometric parameters (Å, °)

| O1—C4   | 1.3411 (18) | N1—C22   | 1.3247 (17) |
|---------|-------------|----------|-------------|
| O1—H1D  | 0.8201      | N1—H1A   | 0.8601      |
| O2—C7   | 1.3128 (17) | N1—H1B   | 0.8599      |
| O2—H2C  | 0.8200      | N2—C23   | 1.3411 (18) |
| O3—C7   | 1.2381 (17) | N2—C22   | 1.3572 (18) |
| C1—C6   | 1.383 (2)   | N3—C23   | 1.3241 (18) |
| C1—C2   | 1.398 (2)   | N3—C24   | 1.3476 (19) |
| C1—H1C  | 0.9300      | N4—C26   | 1.3169 (18) |
| C2—C3   | 1.375 (2)   | N4—C25   | 1.3854 (18) |
| C2—H2B  | 0.9300      | N5—C26   | 1.3571 (19) |
| C3—C4   | 1.395 (2)   | N5—C24   | 1.3642 (18) |
| С3—Н3В  | 0.9300      | N5—H5A   | 0.8601      |
| C4—C5   | 1.4110 (19) | C22—C25  | 1.4155 (18) |
| C5—C6   | 1.402 (2)   | С23—Н23А | 0.9300      |
| C5—C7   | 1.4756 (19) | C24—C25  | 1.3916 (18) |
| С6—Н6А  | 0.9300      | C26—H26A | 0.9300      |
| O4—C11  | 1.3568 (19) | O7—C20   | 1.3600 (17) |
| O4—H4B  | 0.8199      | O7—H7A   | 0.8201      |
| O5—C14  | 1.2289 (18) | O8—C21   | 1.3082 (16) |
| O6—C14  | 1.3146 (17) | O8—H8B   | 0.8200      |
| O6—H6B  | 0.8203      | O9—C21   | 1.2394 (17) |
| C8—C13  | 1.381 (2)   | C15—C16  | 1.378 (2)   |
| C8—C9   | 1.397 (2)   | C15—C20  | 1.3964 (19) |
| C8—H8A  | 0.9300      | C15—H15A | 0.9300      |
| C9—C10  | 1.380 (2)   | C16—C17  | 1.397 (2)   |
| С9—Н9А  | 0.9300      | C16—H16A | 0.9300      |
| C10—C11 | 1.401 (2)   | C17—C18  | 1.381 (2)   |
|         |             |          |             |

| C10—H10A     | 0.9300      | C17—H17A     | 0.9300      |
|--------------|-------------|--------------|-------------|
| C11—C12      | 1.4059 (19) | C18—C19      | 1.3995 (19) |
| C12—C13      | 1.400 (2)   | C18—H18A     | 0.9300      |
| C12—C14      | 1.4803 (19) | C19—C20      | 1.4062 (18) |
| С13—Н13А     | 0.9300      | C19—C21      | 1.4762 (18) |
| C4—O1—H1D    | 109.5       | C22—N1—H1B   | 120.1       |
| C7—O2—H2C    | 109.5       | H1A—N1—H1B   | 120.0       |
| C6—C1—C2     | 119.24 (15) | C23—N2—C22   | 119.92 (12) |
| C6—C1—H1C    | 120.4       | C23—N3—C24   | 112.09 (12) |
| C2—C1—H1C    | 120.4       | C26—N4—C25   | 104.22 (11) |
| C3—C2—C1     | 120.96 (14) | C26—N5—C24   | 106.84 (11) |
| C3—C2—H2B    | 119.5       | C26—N5—H5A   | 126.6       |
| C1—C2—H2B    | 119.5       | C24—N5—H5A   | 126.6       |
| C2—C3—C4     | 120.26 (14) | N1—C22—N2    | 118.36 (12) |
| С2—С3—Н3В    | 119.9       | N1—C22—C25   | 124.68 (13) |
| С4—С3—Н3В    | 119.9       | N2—C22—C25   | 116.96 (12) |
| O1—C4—C3     | 117.27 (13) | N3—C23—N2    | 127.88 (13) |
| O1—C4—C5     | 123.15 (13) | N3—C23—H23A  | 116.1       |
| C3—C4—C5     | 119.58 (14) | N2—C23—H23A  | 116.1       |
| C6—C5—C4     | 119.08 (13) | N3—C24—N5    | 128.14 (12) |
| C6—C5—C7     | 121.60 (13) | N3—C24—C25   | 126.21 (12) |
| C4—C5—C7     | 119.32 (13) | N5-C24-C25   | 105.65 (12) |
| C1—C6—C5     | 120.86 (15) | N4—C25—C24   | 110.01 (11) |
| C1—C6—H6A    | 119.6       | N4—C25—C22   | 133.06 (12) |
| С5—С6—Н6А    | 119.6       | C24—C25—C22  | 116.93 (12) |
| O3—C7—O2     | 122.51 (13) | N4—C26—N5    | 113.29 (12) |
| O3—C7—C5     | 122.02 (12) | N4—C26—H26A  | 123.4       |
| O2—C7—C5     | 115.47 (12) | N5—C26—H26A  | 123.4       |
| C11—O4—H4B   | 109.5       | С20—О7—Н7А   | 109.5       |
| С14—О6—Н6В   | 109.5       | C21—O8—H8B   | 109.5       |
| C13—C8—C9    | 119.17 (15) | C16—C15—C20  | 120.21 (13) |
| С13—С8—Н8А   | 120.4       | C16—C15—H15A | 119.9       |
| С9—С8—Н8А    | 120.4       | C20-C15-H15A | 119.9       |
| C10—C9—C8    | 121.02 (14) | C15—C16—C17  | 120.81 (13) |
| С10—С9—Н9А   | 119.5       | C15—C16—H16A | 119.6       |
| С8—С9—Н9А    | 119.5       | C17—C16—H16A | 119.6       |
| C9—C10—C11   | 119.96 (14) | C18—C17—C16  | 119.17 (14) |
| C9—C10—H10A  | 120.0       | С18—С17—Н17А | 120.4       |
| C11-C10-H10A | 120.0       | С16—С17—Н17А | 120.4       |
| O4—C11—C10   | 118.31 (13) | C17—C18—C19  | 121.12 (13) |
| O4—C11—C12   | 122.16 (13) | C17—C18—H18A | 119.4       |
| C10-C11-C12  | 119.52 (14) | C19—C18—H18A | 119.4       |
| C13—C12—C11  | 119.32 (13) | C18—C19—C20  | 119.04 (12) |
| C13—C12—C14  | 121.21 (12) | C18—C19—C21  | 120.74 (12) |
| C11—C12—C14  | 119.45 (13) | C20—C19—C21  | 120.22 (12) |
| C8—C13—C12   | 120.99 (13) | O7—C20—C15   | 117.65 (12) |
| C8—C13—H13A  | 119.5       | O7—C20—C19   | 122.71 (12) |
| C12—C13—H13A | 119.5       | C15—C20—C19  | 119.64 (13) |
| O5—C14—O6    | 122.80 (13) | O9—C21—O8    | 123.07 (12) |

| O5-C14-C12      | 123.13 (13)  | O9—C21—C19      | 121.93 (12)  |
|-----------------|--------------|-----------------|--------------|
| O6-C14-C12      | 114.06 (12)  | O8—C21—C19      | 114.99 (12)  |
| C22—N1—H1A      | 119.9        |                 |              |
| С6—С1—С2—С3     | -0.1 (2)     | C22—N2—C23—N3   | 0.3 (2)      |
| C1—C2—C3—C4     | 0.7 (2)      | C23—N3—C24—N5   | 179.88 (13)  |
| C2—C3—C4—O1     | 179.11 (14)  | C23—N3—C24—C25  | -0.5 (2)     |
| C2—C3—C4—C5     | -0.9 (2)     | C26—N5—C24—N3   | 179.76 (13)  |
| O1—C4—C5—C6     | -179.48 (13) | C26—N5—C24—C25  | 0.09 (14)    |
| C3—C4—C5—C6     | 0.5 (2)      | C26—N4—C25—C24  | -0.25 (15)   |
| O1—C4—C5—C7     | -0.1 (2)     | C26—N4—C25—C22  | 179.27 (15)  |
| C3—C4—C5—C7     | 179.94 (12)  | N3-C24-C25-N4   | -179.58 (12) |
| C2-C1-C6-C5     | -0.3 (2)     | N5-C24-C25-N4   | 0.10 (15)    |
| C4—C5—C6—C1     | 0.1 (2)      | N3-C24-C25-C22  | 0.8 (2)      |
| C7—C5—C6—C1     | -179.32 (14) | N5-C24-C25-C22  | -179.51 (11) |
| C6—C5—C7—O3     | 177.52 (13)  | N1-C22-C25-N4   | -0.4 (2)     |
| C4—C5—C7—O3     | -1.9 (2)     | N2-C22-C25-N4   | 180.00 (13)  |
| C6—C5—C7—O2     | -2.09 (19)   | N1-C22-C25-C24  | 179.08 (13)  |
| C4—C5—C7—O2     | 178.54 (12)  | N2-C22-C25-C24  | -0.50 (18)   |
| C13—C8—C9—C10   | -0.8 (2)     | C25—N4—C26—N5   | 0.31 (15)    |
| C8—C9—C10—C11   | 0.0 (2)      | C24—N5—C26—N4   | -0.26 (16)   |
| C9—C10—C11—O4   | 179.69 (13)  | C20-C15-C16-C17 | -0.2 (2)     |
| C9—C10—C11—C12  | 1.1 (2)      | C15—C16—C17—C18 | 1.0 (2)      |
| O4—C11—C12—C13  | -179.95 (13) | C16—C17—C18—C19 | -0.6 (2)     |
| C10-C11-C12-C13 | -1.4 (2)     | C17—C18—C19—C20 | -0.4 (2)     |
| O4—C11—C12—C14  | -1.3 (2)     | C17—C18—C19—C21 | 178.90 (13)  |
| C10-C11-C12-C14 | 177.17 (13)  | C16—C15—C20—O7  | 179.13 (13)  |
| C9—C8—C13—C12   | 0.5 (2)      | C16—C15—C20—C19 | -0.9 (2)     |
| C11—C12—C13—C8  | 0.6 (2)      | C18—C19—C20—O7  | -178.81 (12) |
| C14—C12—C13—C8  | -177.94 (13) | C21—C19—C20—O7  | 1.8 (2)      |
| C13—C12—C14—O5  | -172.14 (13) | C18—C19—C20—C15 | 1.2 (2)      |
| C11—C12—C14—O5  | 9.3 (2)      | C21—C19—C20—C15 | -178.15 (13) |
| C13—C12—C14—O6  | 8.60 (19)    | C18—C19—C21—O9  | 178.77 (13)  |
| C11—C12—C14—O6  | -169.98 (12) | C20—C19—C21—O9  | -1.9 (2)     |
| C23—N2—C22—N1   | -179.60 (13) | C18—C19—C21—O8  | -1.68 (18)   |
| C23—N2—C22—C25  | 0.01 (19)    | C20—C19—C21—O8  | 177.67 (12)  |
| C24—N3—C23—N2   | -0.1 (2)     |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------------------------|-------------|--------------|--------------|------------|
| O1—H1D···O3                | 0.82        | 1.87         | 2.5946 (17)  | 146        |
| O4—H4B…O5                  | 0.82        | 1.89         | 2.6111 (18)  | 146        |
| O7—H7A…O9                  | 0.82        | 1.89         | 2.6118 (15)  | 146        |
| O2—H2C···N4 <sup>i</sup>   | 0.82        | 1.87         | 2.6795 (18)  | 167        |
| O6—H6B···N3 <sup>ii</sup>  | 0.82        | 1.82         | 2.6305 (18)  | 172        |
| O8—H8B···N2 <sup>iii</sup> | 0.82        | 1.78         | 2.5864 (17)  | 168        |
| N1—H1A···O9 <sup>iii</sup> | 0.86        | 2.09         | 2.9302 (17)  | 167        |
| N1—H1B···O3 <sup>i</sup>   | 0.86        | 2.01         | 2.8593 (18)  | 171        |

N5—H5A···O7<sup>ii</sup> 0.86 2.14 2.8585 (17) 141 Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, y-1/2, -z+1/2; (iii) -x, -y+2, -z.

Fig. 1

